Wind Turbine Condition Monitoring Workshop

Synchronous Sampling in Wind Turbine Gearbox Condition Monitoring

Huageng Luo Robert Hedeen Darren Hallman

GE Global Research, Niskayuna, New York

Dennis Richter Michael Sirak

GE Transportation, Lawrence Park, Pennsylvania

October 8 - 9, 2009 Broomfield, CO

Outline

- Background
- Motivation
- Synchronous Sampling
- Synthesized Synchronous Sampling
- Numerical Simulations
- Test Rig Application
- Summary

Background

$$f_{FTF} = \frac{1}{120} \left[N_{OR} \left(1 + \frac{d}{D} \cos \theta \right) + N_{IR} \left(1 - \frac{d}{D} \cos \theta \right) \right]$$

$$f_{RE} = \frac{D}{120d} \left(1 - \frac{d}{D} \cos \theta \right) \left(1 + \frac{d}{D} \cos \theta \right) \left| N_{OR} - N_{IR} \right|$$

$$f_{BPFI} = \frac{n}{120} \left(1 + \frac{d}{D} \cos \theta \right) |N_{OR} - N_{IR}|$$

$$f_{BPFO} = \frac{n}{120} \left(1 - \frac{d}{D} \cos \theta \right) \left| N_{OR} - N_{IR} \right|$$

Differential bearing signatures are function of the speed difference

Background

Simulated Variable Speed Turbine Vibration

Real Wind Turbine Vibration*

In FFT analysis a signature can be buried and the signature amplitude can vary due to speed variations

Motivation

- ? How to enhance the differential bearing (gear) damage features if
 - Speed of shaft(s) are not well controlled
 - Encoders from one or both races are not available, but the speed profiles are available
- Synthesized Synchronous Sampling

How to do synchronous sampling without encoders?

Synchronous Sampling

Synchronous Sampling Guarantees Full Cycle Sampling

Encoder is the key in conventional synchronous sampling

Synchronous Sampling

A way of synchronous sampling realization

Synthesized Synchronous Sampling

Basic Steps:

- Assume a pulse at time zero;
- Once the i^{th} pulse is located, at t_i , assume the $(i+1)^{th}$ pulse be located at t_{i+1} ;
- Calculate the average shaft speed, n in PRM, from t_i to t_{i+I} .

$$n(t_{i+1}) = \frac{1}{t_{i+1} - t_i} \int_{t_i}^{t_{i+1}} ShaftSpeed(t)dt$$

• Formulate the time elapsed from t_i to t_{i+1} .

$$\Delta t_1 = t_{i+1} - t_i$$

The time elapsed by one instantaneous rotation

$$\Delta t_2 = 60/n$$

• Solve t_{i+1} in the following minimization.

$$\min_{t>t_i} \left| \Delta t_1 - \Delta t_2 \right|$$

A Mathematically Simple and Easy to Implement Approach

Synchronous Sampling

Synchronous Sampling in Digital Domain with Synchrophaser

- No Limitation in Synchronous Re-sampling

Simulations

Variable Shaft Speed Simulation

Simulations

$$Error \equiv \sqrt{\frac{(n_{Simulated} - n_{Synthesized})^T \cdot (n_{Simulated} - n_{Synthesized})}{n_{Simulated}^T \cdot n_{Simulated}}} \times 100\% = 0.2\%$$

Synthesized Encoder and Speed – Accurate

Simulations

Synthesized Encoder and Speed – Accurate and Robust with Noise

Differential Bearing Test Rig with Outer Race Defect

Shaft Speed Variations => Bearing Signature Variations

Significant Improvement using Synthesized Synchronous Sampling

Summary

- Developed a synthesized synchronous sampling (SSS) technique from a speed profile;
- Numerical simulations verified the accuracy of the SSS technique;
- Engine test rig data analysis results indicate the effectiveness of extracting differential bearing damage features in variable speed operations;
- Initial wind turbine production test stand data analysis results shown the SSS is very promising.

Thanks!

